High Order Difference Approximations for the Linearized Euler Equations
نویسنده
چکیده
The computers of today make it possible to do direct simulation of aeroacoustics, which is very computationally demanding since a very high resolution is needed. In the present thesis we study issues of relevance for aeroacoustic simulations. Paper A considers standard high order difference methods. We study two different ways of applying boundary conditions in a stable way. Numerical experiments are done for the 1D linearized Euler equations. In paper B we develop strictly stable difference methods which give smaller dispersion errors than standard central difference methods. The new methods are applied to the 1D wave equation. Finally in Paper C we apply the new difference methods to aeroacoustic simulations based on the 2D linearized Euler equations. Taken together, the methods presented here are strictly stable by construction. They lead to better approximation of the wave number, which in turn results in a smaller L2-error than obtained by previous methods found in the literature. The results are valid when the problem is not fully resolved, which usually is the case for large scale applications.
منابع مشابه
Summation-by-parts in time
We develop a new high order accurate time-integration technique for initial value problems. We focus on problems that originate from a space approximation using high order finite difference methods on summation-by-parts form with weak boundary conditions, and extend that technique to the timedomain. The new time-integration method is global, high order accurate, unconditionally stable and toget...
متن کاملFully Discrete Energy Stable High Order Finite Difference Methods for Hyperbolic Problems in Deforming Domains: An Initial Investigation
A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations is considered. We use the energy method to derive well-posed boundary conditions for the continuous problem. Summation-by-Parts (SBP) operators together with a weak imposition of the boundary and initial conditions using Simultaneously Approximation Terms (SATs) guarantee energy-stability of the ...
متن کاملNumerical Solution of the Linearized Euler Equations Using High Order Finite Difference Operators with the Summation by Parts Property
We have used high order finite difference methods with the summation by parts property (SBP) on the 1D linearized Euler equations. The boundary conditions are imposed with both the projection method and the simultaneous approximation term method (SAT) for comparison. The formal fourth order of accuracy of the high order SBP operator was verified with both the projection method and the SAT metho...
متن کاملSteady State Computations for Wave Propagation Problems*
The behavior of difference approximations of hyperbolic partial differential equations as time t -* oo is studied. The rate of convergence to steady state is analyzed theoretically and expe ¡mentally for the advection equation and the linearized Euler equations. The choice of difference formulas and boundary conditions strongly influences the rate of convergence in practical steady state calcul...
متن کاملFully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains
A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations which results in a variable coefficient system of equations is considered. By applying the energy method, well-posed boundary conditions for the continuous problem are derived. Summation-by-Parts (SBP) operators for the space and time discretization, together with a weak imposition of boundary an...
متن کامل